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Coadsorption of two monomer species on a square lattice with first-
and second-neighbor interactions
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We obtain the low-temperature phases and phase transitions of the coadsorption of two monomer species on
a semi-infinite square lattice of odd widkh, with first- and second-neighbor interactions. We study the cases
for which first-neighbor interactions between two monomers of the same species are repulsive, allowing all
other interactions to be attractive or repulsive. Most of the numerical results are found to fit exact closed-form
expressions iM, thus allowing exact analytic extrapolations to the infinite two-dimensional ddse).
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PACS numbegps): 02.50-r, 05.50+q, 05.70-a, 64.60.Cn

[. INTRODUCTION of the lattice are particularly relevant to adsorption on ter-
races, and special attention was given to edge effects. Exact
While no exact solution of lattice models for the adsorp-analytic extrapolation to the infinite two-dimensional lattice
tion or coadsorption of gas molecules on surfaces has bediM —) was straightforward, and the results for even and
analytically derived, when first- and second-neighbor inter0dd values oM were verified to converge to the same limit.
actions between the adsorbed molecules are considered, low- In the present study of coadsorption of two distinct mo-
temperature numerical studies of one species of monometgcular species, we consider lattices of odd witithonly,
adsorbed on a square lattice allow one to obtain closed-forAnd results for the infinite two-dimensional lattice are ob-
analytic expressions for all possible phases and for the corf@ined by allowingM odd to become infinite. Since one ex-
ditions under which phase transitions oc€Lf. In this pre- pects the eX|st_ence of phases wh_ere the lattice is covered by
vious work, the surface considered was a semi-infinite®™ly One species, the corresponding phases are caliu
M X N square lattice l—c) in the presence of a gas con- g phases for the first and second species, respectively. The

taining one molecular species, with the adsorbed molecule%:]derlng Jl_ndt;alx florrth\?iqdphiﬁes ﬁ t:]ets?imt? as ]Eh?:;; e
each occupying one site. For this reason, we referred to the ases. Table | provides the characteristics oft q

as monomers. The system is at thermal equilibrium with thd"NasEes appearing fo4 odd, as found in Re{.1]. Phaseg,

. . : and gq refer to the same “empty lattice” phase, which we
monomer chemical potential energydepending on the ex- : .
. . ! now call theE phase, and the following paragraphs provide
ternal gas pressure. The interaction energies of an adsorb

. ) . i . e significance of the vertical entries found in Table I.
monomer areV, with the lattice,V with any first-neighbor In our model, the coadsorption of two molecular species

monomer at a distancg, andW with any second-neighbor it first- and second-neighbor interactions involves eight
monomer at a distancav2. The assumption was that the jnteraction energies: V;, and V., are the interaction ener-

first-neighbor interaction is repulsiva/<0, allowing the gies with the lattice of monomers of the first specieslex

second-neighbor interaction to be either attractive or repul1) and second specié¢mdex 2, respectivelyV,;, V,,, and

sive. The study showed six distinct interaction regions withy, are the first-neighbor interaction energies between the

“p phases” appearing sequentially with increasing externahdsorbed molecular species, first-first species, second-second

pressure, from the empty lattice phamgto the fully covered  species, and first-second species, respectively; Ak,

lattice phasepys, as follows[1]. W,,, andW,, are the second-neighbor interaction energies
Region (a). For M odd, V<W=<V/2 with phases petween the adsorbed molecular species, first-first species,

P1,Pg,P13,P15, and forM even, V<W<V/2 with phases second-second species, and first-second species, respectively.

P1.P4,Pg,P9:P13:P14:P15- The chemical potential energigs, and u, of the corre-
Region (b). For M odd, VI2<W<(V/2)(M—2)/(M  sponding monomer species may be varied by changing the
—1) with phase;,ps,Ps,Ps, P13, P1s- respective species’ partial pressure in the gas phase. The rel-

Region (8). For M even, W=V/2 with phases evant eight activities associated with this system are
P1,P3,P7,P10,P12,P14,P15-

Region (c). (V/2)(M—2)/(M—1)<W<O0 for M odd it Vie
with phases1,ps,Ps,P13,P15 and forM even with phases Xi=ex kgT
P1:P2:Ps5,Pg,P11,P14,P15-

Region (d). OsW<—(V/2)(M—=2)/(M—1) with F{ \V2

yij =ex

phasegs,Ps,Pis-
Region (e). —(V/I2)(M—=2)/(M—-1)<W with phases

Ps.Pis- W
. . L z =expg —
The exact analytical results obtained for any finite witith 1

: @
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TABLE I. Occupational characteristics of the phases of one monomer species on a square lattice of oddl. Widdp andq phases
refer to monomers of the first and second species.

Phase 010 020 011 02 012 B B2 B2
E 0 0 0 0 0 0 0 0
Py M+1 0 0 0 0 0 0 0
4M
1 M-1
Z 0 0 0 0 R 0 0
Ps 5 v
+ +
D6 M+l 0 M+l 0 0 0 0 0
2M 2M
Ds M+2 0 3 0 0 M-1 0 0
2M M M
3M+1 M—-1
- - 0 1 0 0 i 0 0
P1s M M
2M-1 2M -2
1 0 pE— 0 0 PE— 0 0
Pis v v
o 0 M+1 0 0 0 0 0 0
4M
1 M-1
0 Z 0 0 0 0 PR 0
Js 5 v
+ +
96 0 M+1 0 M+1 0 0 0 0
2M 2M
Gs 0 M+2 0 3 0 0 M-1 0
2M M M
3M+1 M-1
0 0 1 0 0 i 0
G M M
2M-1 2M—-2
0 1 0 p— 0 0 pE— 0
(is v v

wherekg is Boltzmann'’s constant antl the absolute tem- tained from the expression of the correspondiijgby mul-

perature. Here the transfer mat}, for a lattice of width  tiplying all its block matrices in the second and third col-

M is of rankD(M)=3M. It is recursively constructed as in umns byy,, andy,,, respectively, and also by multiplying

Refs.[1,2], and we find all its block matrices in the second and third rowszgyand
Z,,, respectively. The initial conditions are

Tl%ll—l lel%ll—l X2Q%/|—1 i , :
2 2 2 = = =
™= T3M—1 X1Y11Pg/|—1 X2Y12Qg/|—1 , (22 To=Po=Qo=1. S
Tw-1 XY12Pw-1 X2¥2Qu-1 The fraction of the lattice that is occupied by the mono-
T p1 1 mers of the first species %, and that of the second species
, M-1 X1Z11 M1 X2212QM2—1 is 6,9. The number per site of first-neighbor adsorbajet
Tu=| TM-1 XYuZiiPy-1 X2¥12Z1Qm-1 |, adsorbate j) is denotedg;; . Similarly, the number per site
T 1 XiYiZuPi_y  XoY2ZiQ3 1 of second-neighbor adsorbatg (o adsorbatej) is g;; . In
(2b)  the limit N—o, these quantities are related to the largest
eigenvalueR of T%A according to
Tuo1 XaZioPyoy X2Z Q-1
To=| Th-1 XuZiPyo1 XoY1222Qm-1 | . ‘Ozi R Vi R % R
I 1 I 1 | ]
Tf/l—l lelzzlzpf/l—l XzyzzzzfoA—l MR 9xi ' MRy ' MR 9z (4)

(20

Each of the matrice®, (i=1,2,3) is obtained from the S=yn R_Ei eiolnxi_;j eijlnyij_% Bijinz;; ,

above block form expression of the correspondiflg by

multiplying all its block matrices in the second and third where S is the entropy per site divided blgg. For finite
columns byy; andy,, respectively, and also by multiply- length N of the lattice, all the eigenvalues contribute to the
ing all its block matrices in the second and third rows byexpressions ob;, 6;;, 8i;, andS in a manner that is simi-
71, and z;,, respectively. Each of the matric€®,, is ob- lar to the one discussed in R¢8]. Consider a given coad-
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sorption system corresponding to given interaction energiemetry between regions-s and s-r requires that there be
Vi; andW;; and with the temperature of the system set to bdifteen distinct cases, five-r and terr-s cases witlr #s. In
below a certain value as dictated by the relation each of these distinct cases, we have considered all possible
orders of the set of valueg;;,W;1,V2,,W,,. For example,
one possible order i¥1;<V5,<W,;;<W,,. For a given or-
der within a givenr-s case, we have allowed first- and
second-neighbor interaction energiés andW,, to be each
where| stands for the absolute value of the lowest of theeither attractive or repulsive, with values within a reasonable
first-neighbor interaction energies. Adsorption patterns argange. Our numerical investigation covered the values of
numerically studied by increasing either of the two externalM =3, 5, and 7, for which the rank of the transfer matrix is
chemical potential energies, keeping the other fixed. Th@7, 243, and 2187, respectively. By =7, the pattern had
Cray C90 of the Pittsburgh Supercomputing Center is useleen established and there was no need to expend further
with EISPACK for the numerical computations. computer time folM>7. As was the case with one species
The energy per site must be continuous across a phagg monomer adsorption on lattices of odd widi, all coad-
boundary. Thus, withA 6y, Ay, A1, Afy, Ao, sorption phases were found to have a perfect structural or-
ABi1, ABy,, and Ay, being the corresponding changes dering or zero entropy. We now present all the coadsorption
across a given boundary @fg, 659, 011, 622, 612, Bi1, phases we have encountered, including their characteristics
B2, andB;,, no change in the energy per site requires  and lattice configurations for ary odd.
When the molecules of one species are by far the most
_ predominant in the gas phase, they are the only adsorbed
Zi m‘”“””‘”%— (VijA 8+ WijA ;) =0. (6 species and the observed phases are eitheptbe the q
phases listed in Table I. Table Il provides the occupational
This equation has been numerically verified to hold in allcharacteristics of the observ&lphases, which we have la-
cases. beleda, for which the lattice of odd widtiM is partially
Coadsorption on the one-dimensional lattidd€1) is  covered by a mixture of monomers of the first and second
the only system for which an exact analytic solution can bespecies. The order of listing is by increasing fiést, then
derived. On this lattice, however, second neighbors are ag,,, and finally 8,,. In this table, exchanging indices 1 and
distances 2 rather thanav2 and their interactions are ne- 2 in the vertical entries generates the characteristics of
glected. The exact analytic solution follows from computing“dual” P phases, labeletl, with P10 being its own dual,
the eigenvalues oT} with M =1. These eigenvalues are the Thus the complete set of phases involving a mixture of
solutions of the cubic equation monomers of both species partially covering the lattice in-
cludes 35 phasesP10, Pla-P9a, P1lla-P18a,
R3—R(1+X1Y 11+ X2Y20) + R[X1Xa(Y11Y 20~ Y1) + X1Y 11 P1b—P9b, and P11b—P18b. Using the same ordering,
. 2 Table Il provides the occupational characteristics of all the
XY 22~ X1 =X F XaXo(Y1~ V1Yot Yuat Y2z F phases labeled andb for which the lattice of odd width
—2y15)=0. (77 M is fully covered by a mixture of both monomer species.
There are 1F phasesF6 andF7, which are their own dual,
Section Il provides the lattice configurations and the charFla—F5a, and their dual phases1b—F5b. Sincep and
acteristics of all the phases encountered Nb=3. Which ~ d phases have been discussed in R&f, we present the
phases and phase transitions are observed should dependlatiice occupational configurations f& and F phases in
the first- and second-neighbor interaction energies. Thedeigs. 1 and 2, respectively. In these figures a square cell
questions are discussed in Sec. lll, which also presents igpresents a lattice site. Either it is empty or it has a circle or
selection of the cases investigated. Section IV gives a dea cross at its center, indicating a lattice site that is vacant or
tailed analysis of two phase transitions for which exact anaoccupied by a monomer of the first or second species, re-
lytic results were derived. Section V provides the limit asspectively. Figure 1 provides the occupational configurations

I I
kB—T<10:T<r.(B, (5)

M— and Sec. VI is the summary and conclusion. for the P phases labeled. The configurations of their dual
P phases are obtained by exchanging circles and crosses.
Il. LATTICE CONFIGURATIONS As mentioned earlier, we have investigated the 15 distinct
OF THE OBSERVED PHASES energy regions -s, each of which involves a number of

possible cases. In the forthcoming section, we have selected
The monomer species labeled 1 may have interaction erthree cases to exhibit the main features of this lattice model.
ergies that fall in one of the five energy regions listed aboven this selection we will show which phases are observed,
for M odd, namely, regions, b, c, d, or e, generically and the conditions at the boundary between phases will be
calledr; in a similar way, the monomer species labeled 2discussed.
have interaction energies that fall in one of these same re-

gions. The notation used is as follows. Consider the case for IIl. PHASE DIAGRAMS
which one has the monomer species of type 1 having inter-
action energie¥;; andW;, falling in regionr and those of For convenience, we introduce energy parameYeend

type 2 having interaction energids,, and W,, falling in X expressed in kelvin and given by
regions. This case will be referred to as the one for which
the coadsorption system belongs to the regicsn The sym- Y=(u1+Vig)/kg, X=(ur+Vy)lkg. (8
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TABLE II. Occupational characteristics of the coadsorption phases corresponding to partial covering of a
square lattice of odd widtM by two monomer species. This is a partial list of phases. The nonlisted phases
are those for which the subscripts 1 and 2 of the vertical entries are interchanged.

Phase 010 020 011 02 012 B11 B2 B2

Pla 1 M-2 0 0 0 0 M-3 2
M 2M M M

P2a 1 b 0 0 3 0 M-1 0
M 2 M M

P3a M-1 M+1 0 0 0 0 0 M-l
aM aM M

baa M—1 M+5 0 2 1 o o M—1
aM aM M M M

P5a M-1 1 0 0 M-1 0 M-1
aM 2 M M

b6 M—1 1 o M—1 M—1 0 o M—1
aM 2 2M 2M M

74 M—1 M+1 0 M+1 M—1 0 0 M—1
4M 2M 2M 2M M

pga M—1 M+2 0 3 M—1 0 M—1 2
4M 2M M M M M

poa M—1 3M—3 0 M-3 M—1 0 M-—1 M-3
aM aM M M M

510 M+1 M+1 0 0 M-+1 0
aM aM 2M

P1lla M+1 M+3 0 0 3 0 2 M-3
aM aM M M M

P12a M+1 M+3 0 1 2 0 0 M-1
4M 4M M M M

P13a M+1 M-2 0 0 M-3 0 M-3 2
4M 2M M M M

P1da M+1 1 0 0 1 0 M-1 0
4M 2 M

b1 M+1 1 o M—1 M+1 0 0 M—1
aM 2 2M 2M M

b16a M—2 M+5 0 2 M—2 M—3 0 2
2M aM M M M M

b17a M—2 1 o 0 2M—4 M—3 M—1 0
2M 2 M M M

18 M—2 1 0 1 2M-5 M—3 M—3 2
2M 2 M M M M M

For a given set of two molecular species, the interactioras the phase diagram. In this diagram, the phase boundaries
energies are fixed and, at a sufficiently low temperafiire must be straight lines, as follows from combining E.

the quantitiesX andY are varied by adjusting the respective and (8):

partial pressure of the molecular species in the gas phase. In

the plot ofY versusX, a number of low-temperature phases

occur in certain regions. For the interaction energies menYA 610= — XA 00— (V11/kg) A 611~ (V22/Kg) A 027

tioned above, the only phases observed are those presented _ _ _

in Sec. II. The interaction energid4; and W;; dictate the (Vi2/ke) A 2= (Wai/ke) A Bra— (Waolke) A B2z
phases that are observed in %¥ plot, thereafter referred to —(W15/kg) A Bos. 9
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TABLE lll. Occupational characteristics of the coadsorption phases corresponding to full coverage of a square lattice of dddowidth
two monomer species.

Phase 010 020 011 02, 01, B B2z B2
Fla 2 M-2 2 2M-5 2 0 M-6 4
M M M M M M M
F2a M-1 3M+1 0 1 M-1 0 M-1 M-1
4M 4M M M M
F3a M+1 3M—-1 0 M-1 1 0 M—-1 M-1
4M 4M M M M
Faa M-2 M+2 0 i 2M—-4 M-3 M—-1 E
2M 2M M M M M M
F5a M-1 M+1 M-1 M+1 M—-1 2M—-2
2M 2M 2M 2M M M
F6 1 1 0 0 M-t M-t M-t 0
2 2 M M M
F7 1 1 M-1 M-1 1 0 0 M-2
2 2 2M 2M M
F5b M+1 M-1 M+1 M-1 M-1 0 0 2M—-2
2M 2M 2M 2M M M
Fab M+2 M-2 i 0 2M—4 M—-1 M-3 E
2M 2M M M M M M
F3b 3M—-1 M+1 M-1 0 1 M—-1 M-1
4M 4M M M M
F2b 3M+1 M-1 1 0 M—-1 M-1 0 M-1
4M 4M M M M
F1b vz oz w2 2w 4
M M M M M M M

In general, when the partial pressure of the second species\ig,,/ks=900 K. One should note that temperature is a scal-
relatively low and, consequently, the value Xfis mainly  ing factor. In the cases considered, energies are around 1000
negative, the adsorbed molecules are those of the first specigsor of the order of 2 kcal/mole and the phases observed are
and the phases observed are those reported in[REfp 4t temperatures below 100 K. Should we have picked ener-
phases In this casefpo= 0= 01,= Bzo=B1,=0 and their  gies that are 10 times higher, the same phases would have
corresponding changes are automatically zero. Thus, accoraéen observed for temperatures below 1000 K. The regions
ing to Eq.(9), phase boundaries in that region of the phase,n.qyntered in these diagrams are named after their corre-
diagram are straight lines parallel to theaxis. Similarly, g0 qing phases as found in Tables I-IIl. The boundary line
when the most abundant mollecules in the gas phase are ké{()}uations are easily obtained by using these tables and Eq.
far those_of ‘h‘? second SPecies, corresppndlng to th? reg_l%)_ As expected, thg phases observed in the region of each
where Y is mainly negative, the adsorption phases in th'SPhase diagram whep¢ is mostly negative are dictated by the

region ar hases and their mutual boundaries are straigh . N . ;
Iinges par:ﬁelr)to ther axis g values assigned t&,; and Wy, falling in the interaction

The phase diagrams of Figs. 3-5 are in units of 100 K&Nergy regiora orb. Similarly, theq phases observed in the
The numerical computations were conducted in the temperd€9ion of each phase diagram whafes mostly negative are
ture range 30—100 K and the data were generated with @ictated by the values assigned\tg, andW, falling in the
lattice widthM = 5. Figure 3 is a sample phase diagram for ainteraction energy regiors, c, andb, respectively. Figure
coadsorption system belonging to regiara with V;;/kg 3, the sample from regioa-a, exhibits phases appearing in
=—1800 K, V,/kg=—1400 K, V;,/kg=—2000 K, dual pairs: the expected pairp,(di), (Ps,ds), (P13,913),

Wi,/kg=—1600 K, Wy,/kg=—800 K, and W;,/kg= and (pi5,9:5) and five additional pairs R3a,P3b),
—250 K. Figure 4 is a sample from regioa-c with (P4a,P4b), (P7a,P7b), and F5a,F5b). Figure 4, the
Vi1/kg=—1800 K, Voolkg=—1400 K, Violkg= sample from regiora-c, also exhibits a certain symmetry.

—300 K, W;;/kg=—1600 K, W,,/kg=—500 K, and The p andq phases are those of regioasandc, respec-
Wy,/kg=—200 K. Finally, Fig. 5 is a sample from region tively. With the exception of phas&5b, the remaining
b-b with V{;/kg=—2400 K, Vy/kg=—1600 K, V;,/kg mixed P and F phases appear in
=1200 K, Wj;/kg=—1000 K, W,,/kg=—700 K, and dual pairs: P3a,P3b), (P7a,P7b), (P12a,P12b),
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x| x| Ix x| Ixl x| |x x| x| x| Ix Y
ol IXI IX| Jo olX| X[ [x]o ol [o] [o P
x| X[ X x| x| X[ Ix x| X[ X 140 ¢
Pla P2a P3a /
x| x| [x]_[x x| x| |x XX x| x[x[x]x 120 4 P
x[o| 1o] [o[x x[o[x|o[X|o[x ol [o] [o 3 E5b
x| <[ X[ X x| X[ X XXX F5a
P4a P5a P6a 100
P7b
x| x| x| Ix xIx] x| |x[|x x|x|x|x|x
x|o[x{olx[o]x x[o[x[o[x[o[x x[o[x[o[x[o[x
< IX[ X[ X <X X[ X[x XX [XIxIx 804
P7a P8a P9a P P7a
8 P4b
x| Ix] x| |x x|olx|o]x xIx| Ix] [|x|x 60
ol o[ o] 1o ol IX[ Ix[ 1o o[ ol [o] [0 Pda
< IX[ X[ X x[o[x[o]x <X X[ [xIx
P10 Plla P12a 0l a,
P3b
ol Ix] Ix| lo x| Ix| x| [x XX |xIxIx|x]x
x[o][x[o[X o[x[o[x[o[x[o ol [o] [o] [o
ol X[ X To <[ I} X[ [X XIXIXIXX[X][X 201 p P3a q
P13a Pl4a Pl5a ! 13
ol lo x|o]x|o|x x|x|o|xlo|x|x —0 9
x[o[x[o][x[olx x[o[X[o[x|o]x o[x[olx]o
x| 1ol Jol [x x[o[x[o]x X[X[oIX[o[X[x E q
Pl6a P17a P18a X
. . . . . 0 20 40 do 80 (
FIG. 1. Occupational configurations for the phases listed in 100

Table Il. A lattice site is represented by a square cell of size
which is left blank when unoccupied and has a circle or a cross F|G. 3. Phase diagram for a coadsorption system belonging to

representing a monomer of the first or second species, respectivelyagion a-a with V;/kg=—1800 K, Vo,/kg=—

(P15a,P15b), (F2a,F2b), and phasd-7 is its own dual.

1400 K, Vyo/kg
—22000 K, Wi,/ks=—1600 K, W,,/kg=—800 K, and
lelkB: —250 K.

Interestingly, Fig. 5, the sample from regibrb, is not com-
pletely symmetric in the appearance of its phases. The mixeghdF5b, F5a andq,5, andF5b andp;s all have a slope of

phases appearing in dual pairs aR66,P6b), (F2a,F2b),

one. A boundary line is vertical or horizontal, when the

(F5a,F5b), andF7, which is its own dual. The remaining phases on either side have the same value of e#thgor

mixed phases arB3b, P7b, andP15a.

0,9, respectively. These properties have been used as a

In general, a boundary line between two phases has éheck of the very high accuradpetter than ten figuresof

slope of one whem 6,p= — A 6,5, as follows from Eq(9).

our numerical computations. In all full coverage phases and

This is the case when the two phases correspond to a fullgt any boundary point on the boundary between any two
covered lattice §19+ 6,0=1) or when they are the dual of such phases, simple counting of first and second neighbors
one another. For example, in Fig. 3, the boundary lines beper site on a lattice of widttV requires

tweenP3a and P3b, P4a and P4b, P7a and P7b, F5a

911+ 022“1‘ 012: (ZM - l)/M ,

FIG. 2. Occupational configurations for
Table 1ll, with the same convention adopted

o|x|x|x|x|x|o x|o|x|o]x|o|x o|x|o|x|o|x|o (10)
O[X[X|X[X[X[0 XX [XIX[X[X[X XX XXX[X]X
O[XIX[X[X[X[o X|o[X[o[X[o[x o[x[o[x[o]x[o
Fla i Fa But Bort B12=(2M = 2)IM.
x|x|o|x|o]x|x x|o|x|o]x|o|x o|x|o|x|o]x|o
x[o[x[o[x]o[x X|o[x[o[x]o[x x[o[x[o[X[o]X _ _ o
X[X[o[x[o[X][X x[o[x[o[x]olx o|x[o]x[c]X[o This has also been used as still another check of the validity
F4a F5a F6 of our numerical results. Finally, we have also verified that
one obtains the same set of valuesSpfe;; , and B;; at any
X|X[X|x|x[x[|x x|olo|olo|o]x o|x|o|x|o|x|o i :
Sololalolalo Solololalolx Slolelalelolo point on a boundary line between two phases.
XIX[X[X[X[X[X x[6[olo[o[o[x o[X[o[x[o[x[o
F7 Flb F2b
IV. PHASE TRANSITIONS
x|o|x]olx|o|x olo|x|o|x|olo o|x|olx|olx|o N _
olojojojofofo o|x|o|x|o|x]o O|X|o[x|O}X|O As an example of the conditions under which phase tran-
Xlo ngbx olx olo XF‘Zb olo olx °F>5<b° X|o sitions occur, we will discuss the one betweBfa and

P15a, andP15a andF7. The occupational configuration at
the phases listed inthe transition betweerP6a and P15a was numerically
in Fig. 1. found to be at
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Y
P, Y
140 |
plS
F2b
120 { p, F5b
1401 F2b
100, P,
F5b
80
P7b F7 -
P a
8 F7
601 P15b
F2a
404 P12b
F2a =201 Pl15a
P15 P6a
20 P3b P12a
P, 601 L
P7a 4 q
-0 P3a q 100 ' q]4q, . 5‘ X
E —60 —20 20 fi 100 140
X -100 q13
0 20 4b| 60 ) 100 q
q, 9, 9 4, ¢

FIG. 4. Phase diagram for a coadsorption system belonging to FlG' > P_hﬁse dligr_am for a coadsokrpt_lon system beIoT(glng o
. _ ith Vi /ka=—1800 K. Vor/ke= — 1400 K. V1a/k region b-b wit Vll/ B—_24OO K, V22/ B__1600 K, V12/ B
regiona-c with vy, ks V22l Kg ' V12/KB 1500 K, Wiy /kg=—1000 K, Wyy/kg=—700 K, andW,,/k
= 300 K, Wll/kB: - 1600 K, W22/kB: - 500 K, andlelkB ! 1778 ! 22'"B ’ 12778

—200 K. =900 K.
M—1 o ( L, 22" (n+3) ( 1 )I X
_1 _1 - - - = lim n =|=—|In2.
010 4 020 2 011 O, 022 2M ’ (ll) nesoo 4nM F(%)F(I’H‘ 1) 2M
M—1 This expression has also been verified numerically.
01,=%, PB11=B2»=0, Bi,= VIR The transition fromP15a to F7 was observed to occur at
i o L i 3M+1 1
With this information, it is possible to compute the number 01°:W’ 620:5’
C of possible lattice configurations satisfying these condi-
tions. For simplicity, let us assume that the lenijtiof the _ B
lattice is an integer multiple of N =4n, with n being very nzg, 22:M, 12:3M * 1' (13
large. All possible configurations are generated by having 4M 2M 4M
every other lattice strip oM sites (there are 2 of them)
fully occupied by monomers of the second species, while the 6.0 _M+1
remaining 4 strips are equally divided into two possible B1=PB2=0, B1o= M

configurations for which every other site of th sites in a

strip is occupied by a monomer of the first species: one hak this case, assume again that the lerigtbf the lattice is a
(M+1)/2 monomers and the other hasl{1)/2 mono- multiple of 4. Then every other of therdstrips of M sites
mers. There are only two possible ways of having everyare still occupied by monomers of the second species, while
other strip fully occupied by monomers of the second speciethe remaining 2 strips have monomers of the first species
and there are (12)!/(n!)? possible ways of having the re- with the two edge sites in all strips being occupied. We focus
maining 2n strips equally distributed among the two con- on the configurations of the lattenZstrips, which we divide
figurations of M +1)/2 and M —1)/2 monomers of the sec- into n pairs, each pair satisfying the conditions of E&3).

ond species. Thu€=2(2n)!/(n!)? and the value of the One such pair is the one made of a st fully covered by

entropyS follows as M monomers of the first species, with the otl2r contain-
ing (M +1)/2 monomers of the same species having no first
2(2n)1 220 (n+1) neig_hbors. This pair hgs a t(_)tal of B+ 1)/2 monomers
== , making a total ofM — 1 first neighbors; all the conditions of
(n) rz)r(n+1) Eq. (13) are met. These are also met by removingonad-

12
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jacent, nonedge monomers from strip 1 and placing them ifM +1)/2 monomersM —1 and M +3)/2 monomers,.. .,
the vacant sites of strip 2. Lé (M) be the number of ways M —[M/4] and[M/4]+(M+1)/2 monomers, respectively.
the k monomers can be removed. Each monomer remove®ne has

decreases the number of nearest neighbors by 2, so that the

number of first neighbors left i1 — 2k. After placing thek igtigt - Fipmm={i}=n. (15
monomers in strip 2, other arrangements are possible th

maintain X first neighbors. LeB, (M) be the number of . . : : :
such arrangements &f+ (M +1)/2 monomers on a strip of avoid the double counting of configurations, one has to di-
vide that number by the following permutationsiy! for the

M sites making R first neighbors, with the two edge sites |

occupied. The number of monomers removed from strip 1 td? strips that are fully occupied; anothiy! for the i strips
strip 2 should not exceed the integer parhbf4, or [ M/4], that have every other site occupied including the edge sites;

to avoid double counting. Straightforward combinatorial and (39! for the 2i, pairs, fromk=1 to[M/4], that is,
analysis shows that (2n)! ( 2n

M_2k 3 (i0)2(2i P! (20! (2ipwra)! 00211215 2ipwg

J2
AM=> X X1, (16)

J=1 3 =1 J=1

%’the number of permutations of thesa &trips is (21)!. To

(14) The total numbelC of configurations satisfying the condi-

(M+1)2—=k  Jgy tions of Eq.(13) follows and

J2
By(M)= > > 21, ks

=1 J—1=1 =1

M
4

on [M/4]
c=22 [( ) Il (AkBkﬁk],

T0l 0211205 - 2ipmia) k=0

with the initial conditionsAg=Bg=1. Thus a pair satisfying (17)
Eqg. (13 could be chosen from any of the pairs generated

above. It is possible to show that for the series of values of S= lim L InC.

M=4m+1 (m being a positive integ®r Aqma;=Biwia N 4NM

and the corresponding strip configurations are identical. In

all cases including the latter one, the number of ways onélere{i}=n means that the summation is carried over all the
may choose a pair of strips wit —k monomers in one and set of values of to ijy4) Satisfying Eq.(15). The overall
k+((M+1)/2) in the other, with the required first-neighbor factor of 2 in the expression & follows from the fact that
condition and with the edge sites occupiedAiB,. When there are two distinct ways of having every other strip of the
there arei, pairs made of these strips, the total number oflattice fully occupied by monomers of the second species.
ways of choosing them isAiB,)'k. In general, consider The entropy at the transition between the pha3&5a and
the n pairs of strips occupied by monomers of the firstF7 using the matrix formulation of the problem fi =5
species, Withig,iy,...,ipm/ pairs of strips havingM and  and 7 shows the value &to have a closed-form expression,

TABLE IV. Infinite limit of the coadsorption phases listed in Tables I-IIl.

Phasegfinite width) 2D 019 020 011 05, 015 B B2 B
Py A : 0 0 0 0 0 0 0
Ps,pPg.P1b,P2b P, 1 0 0 0 0 1 0 0
Ps s : 0 1 0 0 0 0 0
P13 Pa 3 0 1 0 0 1 0 0
pis,F1b Ps 1 0 2 0 0 2 0 0
a; R 0 3 0 0 0 0 0 0
0s,0g.Pla,P2a q, 0 3 0 0 0 0 1 0
s q3 0 3 0 3 0 0 0 0
13 qQs 0 3 0 1 0 0 1 0
015, Fla T 0 1 0 2 0 0 2 0
P3a,b;P4a,b;P11a,b;P12a,b P1 i 3 0 0 0 0 0 1
P10 P2 i i 0 0 2 0 0 0
P5a,P8a,P13a,P14a,P16b P3a i 3 0 0 1 0 1 0
P6a,P7a,P15a P4a : 3 0 3 3 0 0 1
P6b,P7b,P150 P4b i 3 i 0 i 0 0 1
P5b,P8b,P13b,P14b,P16a P3b 3 i 0 0 1 1 0 0
P9a,F2a,F3a Fla i 3 0 1 1 0 1 1
P17a,b;P18a,b;F4a,b;F6 F2 3 3 0 0 2 1 1 0
F5a,b;F7 F3 : 3 : 3 1 0 0 2
P9b,F2b,F3b F1b 3 : 1 0 1 1 0 1
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FIG. 6. Phase diagram for a coadsorption system on the infinite Figure 6_ P"OViqe_S a sa_mple_ Of phase diagrams for a 2D
two-dimensional lattice with the same interaction energies as thoskttice that is the infinite width limit of the phase diagram of
of Fig. 3. Fig. 3. For convenience, equations of some of the boundary

lines are shown, even though they are easily obtained using

namely, In5 and In(2+/30), respectively. These values EQ- (9) and from the knowle_dge of the phases sharing the
were also verified numerically by applying E@L7). Using ~ common boundary as listed in Table IV.

Eq. (17) up to M =15, numerical computations have shown \We will now discuss the conditions prevailing at a bound-
S to approach the exact closed-form expression ary between two phases and consider the infinite width limit

of the two transitions discussed in Sec. IV. As one should
[M/4]

1 expect, since phasd¥a and P15a merge into phas®4a
S=|=—|In| 2+ > JVAB,|. (18 in the 2D limit as shown in Table 1V, the characteristics of
2M k=1 - . .
any point on the boundary line between these phases, given
A complete proof of this result for anyl is lacking at this by Egs.(11) and(12), merge with those oP6a and P15a.

A sample of a different behavior is the 2D limit of the phase
transition betwee15a andF7, which become phasésia
andF3. The conditions at the boundary between these latter
V. THE INFINITE TWO-DIMENSIONAL LATTICE phases are given by the infinite width limit of Eq43) and

In the previous sections, all the expressions obtained and18). The occupational characteristics at the transition follow
lytically in terms of oddM may be extended tM =, thus ~ from Eq.(13) as
providing the adsorption patterns, phase diagrams, and phase
transitions on the infinite two-dimensioné&D) lattice. In 610
this limit, one observes the merging of the phases as pre-
sented in Table IV. The single monomer species phase ad- (19)
sorption on the 2D lattice is that reported in Rdf]. Simple
extrapolation of the phases involving a mixture of monomer Bu=0. B=0, B=1.

species shows their merging into six partial coverdge However, we have been unable to obtain a closed-form ex-
phases and four full coverade phases. Of these latter ten pression inM of Eg. (18) providing the entropyS at the
phasesP1, P2, F2, andF3 are their own dual phases. They transition. Consequently, using EG.8), S was numerically
correspond teequal coverage of the lattice by each of the computed for every odd value & up to and includingvt
molecular species: 7 in one case ang in the other. The =39 Figure 7 is a plot ofs versus 1¥. The data points
remaining mixture phases of unequal coverage include: foufo|low two distinct series, corresponding M=4m-+1 and

P phases with; of the lattice covered by one of the speciesM =4m-+3. The series of data points correspondingMo
and 3 by the other and twd= phases with} of the lattice =~ =4m-+ 3 appears to be almost linear startingvat 11. Lin-

time.

3 1 1 1 3
— 8 020_ 2 011_ 4, 022_ 2 012_ 4



2456 PHARES, WUNDERLICH, MARTIN, BURNS, AND DUDA 56

ear extrapolation to the infinite width of the set of eight dataand with sulfur(poisor). An additional example of the same
points (from M =11-39 provides the value o8 on the 2D  phaseF, involves electrodeposition of silver onto platinum
lattice to be 0.2384 with a correlation coefficient better than(100) with adsorbed iodin¢8]. However, we have not been
0.9999. able to find experimental data showing a systematic search of
all possible adsorption or coadsorption patterns of a given
VI. SUMMARY AND CONCLUSION molecular species on a given surface. By holding one partial
pressure constant and varying the other, data should provide
Othe occupational configurations of the various phases en-

mer species on a ser_ni-infinite square Ia_ttice of O_dd Wm_th countered, and possibly the partial pressures at which transi-
have been characterized. The assumption that first-neighb bns occur. Should this data become available. our model

interaction between monomers of the same Species is rePYfgicates that it will be possible to predict the values of
sive while all other interaction energies may be attractive 0pysqrpate-adsorbate interaction energies. Perhaps first- and
repulsw;a IS sl,upported experlmentaﬂy,?. Based OT the second-neighbor interactions would be sufficient to provide a
study of single-monomer adsorpti¢a], there are only 15 ., hiete explanation for the observed patterns. Third- and
interaction energy regions to be studled_. This results_ IN NUpigher-order-neighbor interactions may still have a non-
merous zero-entropy phases and possible phase diagrams,jigible effect on adsorption patterns. Our model suggests
All the occupational configurations and some representativ,5; one could estimate these interactions using an extension

phasg diagrams are presented and analy;ed. of Eq. (9), provided the conditions of all phase transitions are
Using the continuity of energy per site across phasyatermined experimentally.

boundaries, one obtains the boundary-line equations in ana- 4 expects a phase diagram to be unique for a given

lytical form. At a transition, the entropy has a local maxi- ysarption or coadsorption system. Consequently, we have
mum. From the numerically determined occupational conyeye|oped avapLE program allowing the geometrical con-
figurations at a transition, we present a few cases wh.ere &ruction of the family of phase diagrams assuming that the
closed-form expression for the transition entropy is obtainedq .., \sational characteristics of all possible phases are the
The occupational characteristics of all the phases argpy known parameters. Knowledge about other parameters,

found to have closed-form analytic expressionsMin and  g;ch as some of the conditions under which phase transitions
straightforward extrapolation yields the phases and phasge.r may be added as available to make definite predic-
diagrams on the infinite two-dimensional lattice. The entropyions on first- and second-neighbor interactions.

at the transition between phases on the infinite lattice is also Finally, this model may be particularly useful in the study

discussed. of coadsorption on terrac¢d4], which also enhance catalytic

_ Heterogeneous catalysis can be enhanced by coadsorgeyiyiry [9]. For finite-width terraces, our model is exact pro-
tion, partly justifying our study. For example, in the Fisher-iqeq interaction energies at the edges are negligible, and

Tropsch processcarbon monoxide and hydrogen reducedpy first- and second-neighbor interactions are preeminent.
catalytically to yield a mixture of alkangscoadsorption of

potassium with the carbon monoxide substantially increases
the catalytic properties of the iron substrfd. Increased
theoretical interest in coadsorption is exemplified by Ref. We gratefully acknowledge support from the National
[7], in which phaseF, is studied for the coadsorption of Science Foundation and the Pittsburgh Supercomputing Cen-
carbon monoxide on nickélL00) with potassium(promotej  ter, Grant Nos. PHY910014P and SEE960012P.

The low-temperature coadsorption phases of two mon
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